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Abstract— Rate adaptive multimedia streams offer significant
system and client benefits over non-adaptive streams. These
benefits come at the price of increased complexity in providing
adequate network support and difficulty in understanding how
rate adaptation protocols affect client perceived QoS. In this
paper we define quality of service in terms of the mean rate
seen by the client. We identify an intuitive optimal adaptation
policy that maximizes QoS. We suggest an appropriate scaling
regime for rate adaptive streams and identify asymptotic QoS
for large capacity networks under the optimal adaptation policy.
Implementation of the optimal adaptation policy presents several
obstacles that render it infeasible. We define a multi-class
admission control policy that achieves asymptotically equivalent
QoS to that achieved under the optimal adaptation policy, but
without the need for dynamic adaptation. Our work carries
implications for network designers and content providers.

I. INTRODUCTION

Continued increasing demand for streaming multimedia data
coupled with reliance on best-effort networks like the Internet
has spurred interest in rate-adaptive multimedia streams. Rate
adaptive multimedia streams offer the client benefit of being
resilient to changing network congestion and the system ben-
efit of permitting a large number of streams to concurrently
share network resources. Multimedia streams can be adaptive
because client perceived QoS is often satisfactory over a range
of stream compression levels. This application adaptivity of-
fers content providers and network designers greater flexibility
than is possible for non adaptive streams. Concomitant with
this flexibility are a host of questions regarding service model
design and implementation feasibility.

In this paper we address several of these questions.

• Quality of Service: What constitutes an acceptable defi-
nition of quality of service for rate adaptive streams?

• Optimal Adaptation: What is the optimal adaptation pol-
icy, i.e., how do we decide to allocate network bandwidth
among the various active streams so as to maximize
overall QoS?

• Analysis: Can we characterize the expected QoS under
the optimal adaptation policy and identify an appropriate
scaling for large capacity networks?

• Implementation: How can we feasibly implement adap-
tation policies in a scalable distributed fashion?

• Implications: What are the implications of the answers
to the above questions for content providers and network
designers?

The rest of this section will outline the contributions of this
paper for each of the above questions.

A. Quality of Service

Defining QoS for multimedia content is a particularly thorny
issue. A recent publication by the Video Quality Experts
Group [1] performed a statistical analysis of nine proposed
objective measures of video quality. They found that none
of the proposed models functioned adequately to replace
subjective testing. In addition, the performance of the objective
models were found to be statistically indistinguishable from
one another. We have yet to develop a satisfactory objective
model of video quality.

Rate adaptive streams complicate the situation even further.
Rate adaptive clients receive a video stream encoded at a time-
varying compression level, i.e., they receive a high resolution
stream during periods of low network congestion and a lower
resolution stream during periods of higher congestion.

To maintain tractability we assume rate adaptive clients
assess video quality as a function of the time-average rate of
the stream and the rate at which the stream resolution changes.
These QoS measures are appropriate as a first order proxy for
client perceived performance. We also include blocking prob-
ability considerations in our assessment of the QoS offered by
a given adaptation or admission protocol.

B. Optimal Adaptation

An adaptation policy allocates network bandwidth to active
streams. We identify the adaptation policy that maximizes
the expected normalized time average stream rate under two
different sets of available information. First we assume all
stream durations are known a priori and second we assume
only the current ages of all streams are known. The former
assumption is natural for the case of stored media while the
latter is natural for the case of live media. Both optimal
policies are “sort by volume” policies that grant the maximum
feasible rate to the smallest volume streams such that there
remains adequate capacity to grant the remaining streams
their minimally feasible rate. For the case of stored media
stream volume is the product of the stream duration times the
maximum stream rate, while for the case of live media stream
volume is a function of the maximum stream rate and the
current age of the stream at the time of adaptation.
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C. Analysis

We identify a network scaling appropriate for large capacity
networks and develop asymptotic expressions for QoS under
the two optimal adaptation policies. These QoS expressions
may be used to dimension large capacity links for a given
QoS much as the Erlang blocking probability formula may be
used for dimensioning loss networks for non-adaptive streams.

D. Implementation

Implementing the optimal adaptation policies presents se-
vere complications which render them infeasible for all but
the simplest networks. To circumvent some of these drawbacks
we propose a multi-class admission policy where streams are
assigned a rate upon admission to the network which they
maintain throughout their duration. That is, streams do not
make use of dynamic rate adaptation. There exists a simple
two class admission policy that obtains an asymptotic QoS
equal to that obtained under the optimal adaptation policy.

E. Implications

We assess our findings and discuss their implications. First,
content providers need only offer two encodings of media
content: an encoding at the lowest quality and an encoding at
the highest quality. Second, network designers may profitably
utilize our modes of analysis to provision capacity on net-
works servicing rate adaptive streams subject to blocking and
QoS constraints, similar to how the Erlang blocking formula
predicts the blocking probability for non-adaptive streams. In
particular, bottleneck links should be provisioned to lie within
the “rate adaptive scaling regime”. Finally, the multi-class
admission policy is feasible for networking environments with
stationary offered loads.

After introducing the model in Section II, the remaining
sections of the paper will investigate each of these questions
in turn. In particular, Section III discusses QoS for rate
adaptive multimedia content, Section IV identifies the optimal
adaptation policy, Section V analyzes asymptotic QoS for large
capacity networks, Section VI discusses our admission control
implementation, and Section VII offers a conclusion.

II. THE MODEL

A. Content Providers

Content providers offer multimedia content encoded at
various compression levels. We abstract the complex space of
possible encodings and compressions into a single parameter
corresponding to the time average rate of the resulting stream,
which we term the subscription level of the encoding. The
subscription level of a stream of duration d encoded so that
the instantaneous transmission rate is (b(t), 0 ≤ t ≤ d) is

1
d

∫ d

0
b(t)dt. (1)

We use the term maximum subscription level to denote the
time average rate of a stream encoded at the finest resolution
deemed necessary by the provider, and denote this quantity
by s. We will constrain all streams to a common adaptivity,

denoted by β ∈ (0, 1], with the understanding that βs is the
minimum subscription level and corresponds to the coarsest
resolution deemed useful by the provider. That is, the adaptiv-
ity of a stream is the ratio of the minimum subscription level
over the maximum subscription level, and this ratio is assumed
constant for all streams. This assumption is reasonable when
considering that compression algorithms are somewhat linear,
i.e., if a given compression algorithm is able to compress a
1 Mbps stream to 100 kbps, then it is likely to be able to
compress a 100 kbps stream to 10 kbps. The maximum and
minimum subscription levels may vary across streams, it is just
the ratio that is assumed constant. To reiterate, finer resolutions
than s are deemed unnecessary and coarser resolutions than
βs are deemed useless. The interval [βs, s] defines the range
of reasonable subscription levels for a given stream.

The set of supported subscription levels for a given stream is
denoted by S ≡ {βs = s1 < ... < sK = s} for K ≥ 2. This
definition abstracts away the underlying implementation, be
it through hierarchical or simultaneous encoding. A provider
utilizing hierarchical encoding would create multicast groups
corresponding to each layer in the hierarchy with the under-
standing that a client subscribing to level sk would subscribe
to the first k layers. The aggregate bandwidth received by the
client would then sum to sk. A provider utilizing simultaneous
encoding would offer K separate encodings, one at each of
the offered subscription levels.

Stream durations are independent random variables, denoted
by D, with common distribution FD, and mean E[D] ≡ µ−1.
A known stream duration is denoted by d. All encodings of
a given stream share the same duration, i.e., the compression
level does not impact the stream duration. The stream du-
ration need not necessarily equal the content duration, i.e.,
clients may terminate a stream prior to the completion of the
content. We do assume, however, that the stream duration is
independent of the client perceived QoS.

Maximum subscription levels are independent random vari-
able, denoted by S, with a common distribution FS and a
mean E[S] ≡ σ. We assume D and S are independent.
The assumption that all streams share a common adaptivity
requires that the minimum subscription level equal βS with
probability 1 for all streams.

We define the product SD as the volume of a stream. The
volume of a stream is therefore the product of its maximum
subscription level and its duration, and corresponds to the total
number of bits required to encode the stream at its highest
useful resolution.

Throughout the paper we assume all random variables to
have support on [0,∞), on which their CDF is continuous
and increasing so as to guarantee the existence of an inverse
and a density. We introduce some notation for CDF’s. If FX
is a CDF for a random variable X then F̄X is the CCDF
for X . If X is a random variable with CDF FX , then the
random variable X̂ is defined as having a CDF FX̂(x) ≡

1
E[X]

∫ x
0 ydFX(y). Also, for two independent random variables
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X ∼ FX and Y ∼ FY , the quantity FXY (z) is defined as

FXY (z) ≡
∫ ∞

0
FX(

z

y
)dFY (y) ≡

∫ ∞

0
FY (

z

x
)dFX(x), (2)

and corresponds to the probability P(XY ≤ z). Combining
these definitions implies F

X̂Y
(z) be interpreted to mean

F
X̂Y

(z) =
1

E[XY ]

∫ z

0
wdFXY (w). (3)

B. Network

Let L denote the set of links comprising the network. We
assume that the capacity available on each link for multimedia
content, denoted by cl, l ∈ L, is fixed. This assumption
is valid in several realistic scenarios where non-streaming
content is granted a lower priority under streaming traffic
in deference to the more demanding service constraints of
the latter. Such a protocol is envisioned to varying degrees
in the proposed DiffServ and IntServ network architectures.
This assumption is, roughly speaking, somewhat reflective of
the Internet considering that most streaming providers use
congestion–insensitive UDP for transport while most elastic
traffic uses the congestion–sensitive TCP protocol.

Let R denote the set of routes, i.e., client/server pairs, on
the network. The notation (l ∈ r) denotes the set of links
comprising route r and (r � l) denotes the set of routes
incident on link l. Let λ denote the arrival rate of new stream
requests, either in the context of arrivals on a given route or
on a given link. As is natural in such models, we will assume
new stream requests form a Poisson process. Define the offered
load as ρ ≡ λ

µ , again either in the context of a route or link.
The random variables N(t) ≡ (Nr(t), r ∈ R) denote the

number of active streams on each route at a given time t. We
write n(t) ≡ (nr(t), r ∈ R) when this quantity is assumed
known at time t. The notation (i, r) indexes stream i on route
r. For any model parameter X , the notation Xi,r refers to
stream (i, r) and implies the value Xi,r will in general be
stream dependent.

C. Admission

Rate adaptive streams have characteristics reminiscent of
both elastic and inelastic traffic. They have the capability of
adapting their subscription levels in response to congestion,
i.e., they share network bandwidth much as elastic flows
do. This adaptivity, however, is finite because streams have
minimally acceptable subscription levels below which their
service quality is unacceptable. In this sense they are similar
to inelastic flows. Minimum resource requirements naturally
lead to admission control policies. We utilize a non-preemptive
full sharing admission policy, i.e., a stream is blocked only if
there is insufficient bandwidth along its route to support it
when all previously admitted streams incident on the route
are at their respective minimum subscription levels. That is,
a new stream with minimum rate βs on route r′ is admitted
provided

∑

r�l

nr∑

i=1

βsi,r + βs ≤ cl, ∀l ∈ r′. (4)

The admission control decision does not depend on the
instantaneous subscription levels of the active streams at the
time of admission, but only the minimum subscription levels
associated with the active streams. Recall that stream durations
are independent random variables that are also independent of
the received QoS. In terms of the number of active/admitted
streams, this network functions like a loss network [2] where
the sizes of the arriving calls are the corresponding minimum
subscription levels.

At first blush such an admission scheme would appear
infeasible due to the immense amount of state information
required for an admission decision, i.e., knowledge of the
minimum rates associated with all active streams incident on
any link comprising the route. If, however, stream packets cor-
responding to the minimum subscription level are aggregated
in high priority queues throughout the network, then admission
decisions may be made via end to end probing, as proposed
in [3].

D. Adaptation

We are interested in investigating dynamic adaptation where
a client changes its subscription level throughout stream
playback in response to congestion changes along its route.
Define an adaptation policy π as assigning an instantaneous
subscription level Sπ(t) to each active stream at each time
t. That is, the instantaneous subscription levels (Sπi,r(t), i =
1, ..., Nr(t), r ∈ R) of all streams active at time t are random
variables which depend on the adaptation policy π.

III. QUALITY OF SERVICE

As mentioned in the introduction, it has proved difficult
to develop accurate objective models of video quality that
correspond well with results obtained from subjective tests [1].
This difficulty is exacerbated for the case of adaptive video in
that the client receives a stream with a time-varying compres-
sion rate corresponding to changes in the client subscription
level. We make two natural assumptions about client perceived
performance for rate adaptive streams:

• stream resolution, and thus the client perceived quality, is
roughly proportional to the time average bandwidth used
by the video stream;

• changes in stream subscription level have an adverse
effect on client perceived quality due to the distraction
caused by the changing video resolution.

The first assumption is gross in that it ignores many of
the intricacies inherent to most modern digital compression
algorithms such as motion compensation, psychovisual con-
siderations, the means of compression, etc. All other things
being equal, however, higher video quality generally implies
a higher associated average rate for the stream and vice versa.
So too with the second assumption: given two clients receiving
the same stream with the same average rate, the stream with
fewer resolution changes will generally be thought to be of
superior quality over one with more. The work in [4] offers a
more detailed investigation of this phenomenon.
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The more contentious issue is how to model the functional
dependence of client perceived performance on these two
quantities. The fact that the proposed models evaluated in
[1] failed to outperform a simple linear model such as SNR
suggests a linear dependence of video quality on the mean
stream rate may be adequate. Indeed, the subjective evaluation
of the BT.500 video quality assessment standard found in
[5] suggests that client perceived performance is linear in
the mean rate over the operating regime of interest. There
is naturally a law of diminishing returns as the average rate of
the stream increases beyond s̄, modeled by a utility function
which is eventually concave. There is also naturally a convex
neighborhood around 0 corresponding to negligible video
quality for stream encodings with average rates below s, see
[6] for a more complete discussion. Within the interval [s, s̄],
however, a linear model may indeed be adequate.

Assuming the preceding is valid, there is still the issue
of ascribing the relative importance of these two measures
in determining client perceived performance. For example,
how do we compare a high bandwidth stream with frequent
subscription level changes with a low bandwidth stream with
few subscription level changes? Lacking any better insight,
we define two quality of service measures for rate adaptive
multimedia streams: the normalized time-average subscription
level and the rate of adaptation, i.e., the rate at which the
subscription level changes.

In particular, define the random variable

Qπ ≡ 1
D

∫ D

0

Sπ(t)
S

dt ∈ [β, 1] (5)

as the normalized time average subscription level seen by a
randomly selected client, where the random variable D is the
stream duration and the random process (Sπ(t), 0 ≤ t ≤ D) is
the subscription schedule the client sees in a network operated
under rate adaptation policy π. Note that Qπ = β corresponds
to a client receiving subscription level βS throughout its
duration, and Qπ = 1 corresponds to a client receiving
subscription level S throughout its duration.

Similarly, let the random variable

Rπ ≡ 1
D

∑

t∈Cπ

|Sπ(t+) − Sπ(t−)|, (6)

denote the rate of adaptation seen by a randomly selected
client. These same two metrics have been used in several
recent papers on rate adaptive streams, e.g., [7], [8].

Finally, the blocking probability is also an important aspect
of system level quality of service. The blocking probability
Br′(s) of a client with minimum subscription level βs on
route r′ is

1 −Br′(s) ≡ P
(∑

r�l

Nr∑

i=1

βSi,r + βs ≤ cl, ∀l ∈ r′
)
, (7)

where the probability is taken with respect to the stationary
distribution of the active streams. This equation simply states
that the probability of acceptance is the probability that the

minimum bandwidth commitment on each link is less than the
link capacity. Note that the blocking probability is independent
of the adaptation policy π because the admission policy is
independent of π. We will focus on adaptation and admis-
sion protocols achieving asymptotic zero blocking whenever
possible.

Of these three metrics we will grant precedence to the mean
subscription level and will use it as our objective in searching
for the optimal adaptation policy.

IV. OPTIMAL ADAPTATION POLICY

An adaptation policy is an allocation of network capacity
to the set of active streams, subject to the constraint that the
aggregate allocation to all streams incident on a given link not
exceed the link capacity, i.e.,

∑
r�l

∑nr

i=1 si,r(t) ≤ cl ∀l ∈ L,
and that each stream’s allocation be feasible, i.e., si,r(t) ∈
Si,r, i = 1, ..., nr ∀r ∈ R.

Our objective is to maximize the expected normalized time
average subscription level, i.e., Eπ[Q], the client average per-
formance. We will identify the optimal adaptation policy under
two different sets of available information: first when stream
durations are known and second when they are unknown but
share a common distribution. The former corresponds to the
case of stored media and the latter corresponds to the case
of live media. We also assume the minimum and maximum
subscription levels, i.e., βS and S, are known.

A. Known Stream Durations

In this subsection we consider the case of stored media,
where the durations of all active streams are known.

Theorem 1: The adaptation policy πk that maximizes Eπ[Q]
when stream durations are known is the instantaneous band-
width allocation at each time t resulting from the solution of
the following integer linear program:

max
s(t)

∑

r∈R

nr(t)∑

i=1

si,r(t)
si,rdi,r

(8)

s.t.
∑

r�l

nr(t)∑

i=1

si,r(t) ≤ cl ∀l ∈ L,

si,r(t) ∈ Si,r, i = 1, ..., nr(t),∀r ∈ R.

where s(t) = (si,r(t), i = 1, ..., nr(t), r ∈ R) is the allocation
given to each active stream. Proof: see appendix.

The theorem demonstrates two important aspects of optimal
adaptation. First, optimal adaptation is “static between events”,
i.e., the optimal allocation only changes upon a stream depar-
ture or arrival. This follows from the fact that the parameters
of (8) only change upon a departure or arrival. Second, the
optimal adaptation policy is instantaneous since the optimal
allocation is independent of any past adaptation experienced
by the active streams.

The special case of a network with a single bottleneck link
per route provides some insight into the form of the solution
to the program. The solution to (8) when there is at most one
bottleneck link per route is to sort streams traversing a given
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bottleneck by volume vi,r = si,rdi,r, granting the maximum
subscription si,r(t) = si,r to the small volume streams and
the minimum subscription si,r(t) = βsi,r to the large volume
streams.

Corollary 1: Consider a bottleneck link traversed by n
active streams, labeled in order of increasing volume v−1

1 >
... > v−1

n . The solution to (8) for the case of at most one
bottleneck link per route is

sπk
i (t) =






si, i = 1, ..., n̄− 1
s∗n̄, i = n̄
βsi, i = n̄+ 1, ..., n

(9)

where

n̄ = max
{
m |

m−1∑

i=1

si +
n∑

i=m

βsi ≤ cl

}
(10)

and

s∗n̄ = max{s ∈ Sn̄ | s ≤ cl −
n∑

i=1
i 
=n̄

sπk
i (t)}. (11)

Proof: see appendix.
The intuition behind these results is clear: the client average

QoS is maximized by granting precedence to streams using
fewer network resources. The value s∗n̄ states stream n̄ should
use any residual bandwidth remaining after all other streams
have received their allocation. For large capacity links servic-
ing large numbers of streams this increase will be negligible.

The corollary is noteworthy in several points. First, the
optimal adaptation policy uses only two of the offered sub-
scription levels for each stream, i.e., s and βs. This implies
content providers need only provide two encodings for each
stream, provided clients are not access-line limited. If clients
are access-line limited, i.e., if ai is the access line for client i
and ai < si, then the solution in Corollary 1 requires changing
si to min{si, ai} in (9,10). In this case the optimal allocation
may indeed make use of more than two subscription levels.

Second, the “sort by volume” policy offers clients and
content providers the correct incentives to make efficient use
of shared capacity. During network congestion, using a policy
where small volume streams achieve a higher QoS than large
volume streams encourages the use and provision of smaller
volume streams.

B. Unknown Stream Durations

In this subsection we consider the case of live media where
the durations of all active streams are unknown. We maintain
the assumption that the minimum and maximum subscription
levels, i.e., βS and S, are known.

Theorem 2: The adaptation policy πu that maximizes
Eπ[Q] when stream durations are unknown is the instanta-
neous bandwidth allocation at each time t resulting from the
solution of (8) with the quantity 1

di,r
replaced with E[ 1

D | D >
li,r(t)], where li,r(t) is the current age of stream (i, r) at time
t. Proof: see appendix.

If a stream is admitted at time a then its current age at
time t is l = t− a. The allocation properties of being “static
between events” and instantaneous apply to this case as well.

The solution to (8) when there is at most one bottleneck link
per route and stream durations are unknown is to sort streams
traversing a given bottleneck by expected volume. We define
the expected volume v(t) as v(t)−1 = 1

sE[ 1
D | D > l(t)].

Corollary 2: Consider a bottleneck link traversed by n
active streams, labeled in order of increasing expected volume
v1(t)−1 > ... > vn(t)−1. The solution to (8) for the case of
at most one bottleneck link per route and unknown stream
durations is again given by (9) through (11). Proof: see
appendix.

Not knowing stream durations a priori does not change the
fact that the optimal solution still uses only two subscription
levels. Also, the issue of incentives applies here as well.
For the case of live streams, newly initiated streams will
have lower expected durations and will therefore have better
chances of being allocated a high subscription level. As the
live stream gets longer, however, it becomes increasingly likely
that the stream will be allocated a low subscription level.

V. ASYMPTOTIC ANALYSIS

Our results in this section are limited to networks where
each route traverses at most one bottleneck link. In practice
this is often the case, especially for clients with shared access
links, e.g., cable modem users, or at network peering points.

We propose a network scaling, which we call “Rate Adap-
tive Scaling”, consisting of a linear scaling of bottleneck link
capacity in the link arrival rate. Consider a sequence of links,
indexed by m where the arrival process for the mth link is
Poisson with rate parameter mλ and the link capacity for the
mth link is

c(m) ≡ mασµ−1λ = mασρ. (12)

Define the asymptotic normalized time-average subscription
level under adaptation policy π and under the rate adaptive
scaling with scaling parameter α to be

qα,π ≡ lim
m→∞

Eπ[Q]. (13)

The average number of active streams in a low blocking
regime is mρ = mλµ−1, i.e., the product of the arrival rate of
new stream requests, mλ, times the average stream duration,
µ−1. The maximum offered load, in units of bandwidth, is
mσρ, which is the product of the average number of active
streams, mρ, times the average maximum subscription level σ.
The minimum offered load, in units of bandwidth, is βmσρ,
which is the product of the average number of active streams,
mρ, times the average minimum subscription level βσ. The
scaling parameter α = c(m)

mσρ is the ratio of available capacity,
c(m), over the maximum offered load, mσρ.

There are three natural scaling regimes, parameterized by
α, that describe the average bandwidth available to a stream.
The average bandwidth available to a stream is c

ρ , i.e., the
bottleneck link capacity, c, divided by the average number of
active streams, ρ. The scaling parameter α may be thought of
as the fraction of the maximum subscription level available
on the link, i.e., c

ρ = ασ. When α > 1, the average available
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TABLE I

SCALING REGIMES, BLOCKING, AND ASYMPTOTIC QOS.

Regime α Blocking QoS

Overloaded α ≤ β 1 − α
β

qα,π = β

Rate Adaptive β < α < 1 0 Theorem 3
Underloaded 1 ≤ α 0 qα,π = 1

bandwidth per stream c
ρ > σ exceeds the average maximum

subscription level σ. When α < β, the average available
bandwidth per stream c

ρ < βσ is less than the average
minimum subscription level βσ. The regime β < α < 1 is
characterized by an average available bandwidth per stream
between the average minimum subscription level and the
average maximum subscription level, i.e., βσ < c

ρ < σ. The
characteristics of these three scaling regimes are summarized
in Table I.

Consider the overloaded regime, parameterized by α ≤ β,
where the average available bandwidth per stream is less than
the average minimum subscription level. In an overloaded
network, admitted streams will almost always receive their
minimum subscription level, and so the normalized time aver-
age subscription level will be β for most streams. Because the
system is almost always full, the Erlang blocking probability
is given by

E(mρ,
c(m)
βσ

) =
mρ− c(m)

βσ

mρ
= 1 − α

β
, (14)

where c(m)
βσ is the average maximum number of streams

admissible on the bottleneck link.
Consider the underloaded regime, parameterized by α ≥ 1,

where the average available bandwidth per stream exceeds
the average maximum subscription level. In an underloaded
network, admitted streams will almost always receive their
maximum subscription level, and so the normalized time
average subscription level will be 1 for most streams. It follows
trivially that the blocking probability will be negligible in this
regime.

Finally consider the rate adaptive regime, parameterized by
β < α < 1, where the average available bandwidth per stream
lies between the average minimum and maximum subscription
levels. Because of this, admitted streams will receive a nor-
malized time average subscription level somewhere between
β and 1. This regime will also have zero blocking because

lim
m→∞

E(mρ,
c(m)
βσ

) = lim
m→∞

E(mρ,
α

β
mρ) = 0. (15)

The following theorem gives the asymptotic normalized
time-average subscription level under the optimal adaptation
policies.

Theorem 3: Under the optimal adaptation policy for known
stream durations πk, the asymptotic normalized time-average
subscription level for networks with at most one bottleneck
link per route is

qα,πk = 1 − (1 − β)F̄SD(F−1
ŜD

(ξ)), for β < α < 1, (16)

where ξ ≡ α−β
1−β .

Under the optimal adaptation policy for unknown stream
durations πu, the asymptotic normalized time-average sub-
scription level for networks with at most one bottleneck link
per route is

qα,πu = 1 − (1 − β)
∫ ∞

0

∫ ∞

0

1
d

∫ d

0
(17)

I(
sµ

γ(l)
> F−1

Ŝ
(ξ)) dl dFD(d) dFS(s).

for β < α < 1, where ξ ≡ α−β
1−β and γ(l) ≡ E[ 1

D | D > l].
Proof: see appendix.

The equations in the theorem show that asymptotic QoS
under the optimal adaptation policy is a function of the
scaling parameter α, the stream adaptivity parameter β, the
stream duration distribution FD, and the maximum average
rate distribution FS . These equations can be seen as the rate
adaptive analogue to the Erlang blocking probability formula
for non-adaptive streams.

We claim the rate adaptive scaling regime to be the appro-
priate way to scale capacity for rate adaptive streams because
it makes efficient use of capacity, has a low blocking prob-
ability, and exploits the adaptive capability of these streams.
To investigate the significance of optimal adaptation within
the rate adaptive scaling regime, we contrast the asymptotic
normalized subscription level under the optimal adaptation
policy with that achieved under two baseline policies which
we term the fair share and two rate randomized adaptation
policies. These policies are defined for the case when stream
subscription levels are homogeneous, i.e., all streams have
a common maximum subscription level s and a common
minimum subscription level βs. The fair share adaptation
policy grants all active streams an equal share of the bottleneck
link capacity, bounded below by βs and bounded above by s.
The two rate randomized policy grants a random set of streams
s and the remaining streams βs. We show in [9] that these two
baseline policies provide an asymptotic QoS of qα = α for
β < α < 1.

Figure 1 plots qα,πk vs. α for various β when stream
durations are exponentially distributed. It is straightforward to
show that the asymptotic normalized subscription level under
an exponential stream duration distribution is

qα,πk = 1 − (1 − β) exp
(
W (

ξ − 1
e

) + 1
)
, (18)

where W (x) is Lambert’s W function. Also included on the
plot is the straight line qα = α corresponding to the baseline
policies. Figure 1 shows the benefit of optimal adaptation
over baseline adaptation is higher for more adaptive streams,
i.e., smaller β. Second, the benefit of optimal adaptation over
baseline adaptation is greatest when α is well within the
rate adaptive scaling regime. Finally, the benefit of optimal
adaptation over baseline adaptation is higher for stream dura-
tion distributions with large variance. Indeed, when all stream
durations are constant, say D = d, we have that qα,πk = α.
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Fig. 1. qα vs. α under the optimal adaptation policy with known stream
durations and the fair share/randomized policies for β = .1, .5, .9. Stream
duration distribution is exponential.

A more thorough investigation comparing simulation results
with computed theoretical values may be found in [9].

Our work in [9] also points to a serious drawback with
optimal adaptation. Streams with a volume near some critical
threshold will undergo an unacceptably high rate of adaptation
Rπ. The intuition is that because the optimal adaptation
policy “sorts” active streams by volume, small volume streams
continuously receive their maximum subscription level S,
large volume streams continuously receive their minimum
subscription level βS, but those streams with intermediate
volumes receive a subscription level that toggles between βS
and S at a rate that increases in the arrival rate λ. The problem
of a high rate of adaptation is not peculiar to the optimal
adaptation policy; in [9] we demonstrate that the baseline
policies we investigate suffer from this problem as well.

A more severe critique is that implementation of optimal
adaptation would be infeasible due to the fact that the policy
would require centralized network control which would be
instantly aware of all stream arrivals and departures and would
require that active streams, or the network, instantaneously
adapt to changes in their allotted subscription level.

VI. OPTIMAL ADMISSION CONTROL

The previous section identifies several problems with the
optimal adaptation policies. In this section we do away with
dynamic adaptation and instead consider a multi-class admis-
sion policy where an arriving stream request is assigned a
service class based on its stream volume.

We will show that the asymptotically optimal multi-class
admission policy achieves an asymptotic QoS equal to that
obtained under the optimal dynamic adaptation policy. That is,
because the traffic mix is roughly constant for a large capacity
link, we would expect a stream’s QoS under the optimal policy
to depend more on its own volume than on the traffic it
encounters on the network, which will be somewhat static
in makeup. Roughly speaking, a small volume stream may
expect to receive its maximum subscription level throughout

its lifetime, and a large volume stream may expect to receive
its minimum subscription level throughout its lifetime. This
argument grants some intuition to our result in this section
that the optimal multi-class admission control policy obtains
an asymptotic QoS equaling that obtained under the optimal
dynamic adaptation policy.

We consider the case of K ≥ 2 classes where streams are
assigned a class based on their stream volume V = SD. The
volume thresholds are denoted v = (v1, ..., vK−1) where vk ≤
vk+1, v0 = 0 and vK = ∞. Thus a stream with volume v is
assigned to class k∗ if vk∗−1 ≤ v < vk∗ . We define a vector of
adaptation ratios .β = (1 = β1, ..., βK = β) where βk > βk+1.
The interpretation is that a stream with maximum subscription
level s assigned to class k′ is permitted a subscription level
βk′s, or the nearest feasible subscription level in S. The stream
is admitted provided

K∑

k=1

βk

nk(t)∑

i=1

si,k + βk′s ≤ c (19)

where si,k is the maximum subscription level of the ith stream
in class k, and n(t) = (nk(t), k = 1, ...,K) is the number of
active streams in each class. All streams admitted to each class
k have the same normalized subscription level βkS

S = βk.
We will again make use of the rate adaptive scaling regime,

where the arrival rate for the mth link is λ(m) = mλ and the
capacity of the mth link is c(m) = mασρ. The arrival rate of
class k streams in the mth link is

λk(m) = mλP(vk−1 ≤ V < vk). (20)

The optimal adaptation policy achieves asymptotic zero block-
ing provided α ≥ β. To maintain that property for our
multi-class admission policy we impose the constraint that the
asymptotic utilization be 1, i.e.,

lim
m→∞

∑K
k=1 λk(m)E[V | vk−1 ≤ V ≤ vk]βk

c(m)
= 1. (21)

It is shown in [2] that blocking is asymptotically zero for
this case, although convergence is O( 1√

c
). Our objective is to

maximize the asymptotic normalized subscription level which,
under the assumed asymptotic zero blocking regime, is given
by

lim
m→∞

K∑

k=1

λk(m)
λ(m)

βk. (22)

The optimization is to identify the optimal v∗ that solves

max
v

lim
m→∞

K∑

k=1

λk(m)
λ(m)

βk (23)

s.t. lim
m→∞

K∑

k=1

λk(m)E[V | vk−1 ≤ V ≤ vk]βk
c(m)

= 1.

The following theorem identifies the asymptotically optimal
multi-class admission policy that achieves asymptotic zero
blocking. The theorem gives an expression for the asymptotic
normalized subscription level under that admission policy

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



equaling that obtained for the asymptotic normalized subscrip-
tion level under the optimal dynamic adaptation policy.

Theorem 4: The asymptotically optimal multi-class admis-
sion policy that achieves asymptotic zero blocking for networks
with at most one bottleneck link per route is a two-class policy
with a volume threshold

v∗ =






0, α ≤ β

F−1
ŜD

(α−β
1−β ), β < α < 1

∞, α > 1
. (24)

The asymptotic normalized subscription level under this
policy is

qα,πa =






β, α ≤ β

1 − (1 − β)F̄SD(F−1
ŜD

(α−β
1−β )), β < α ≤ 1

1, α > 1
(25)

where πa denotes the optimal admission policy. Proof: see
appendix.

Thus v∗ = (v∗, ..., v∗) and so, as for optimal adaptation, the
only required subscription levels are βS and S. The optimal
threshold depends upon the rate adaptive scaling parameter α,
the stream adaptivity β, the duration distribution FD, and the
maximum subscription level distribution FS .

Optimal admission control achieves the same normalized
subscription level as optimal adaptation, achieves a superior
rate of adaptation, and maintains asymptotically zero blocking.
The caveat here is that the blocking probability under optimal
adaptation goes to zero exponentially fast, while the blocking
probability under optimal admission control only goes to
zero as O( 1√

c
). In addition, the multi-class admission control

implementation requires accurate assessment of the system
parameters, while optimal adaptation does not. For this reason
optimal adaptation may outperform optimal admission con-
trol for networks servicing non-stationary workloads. Finally,
optimal admission control relies upon stream durations being
known at the time of admission. Optimal admission control is
therefore not viable for live media.

VII. CONCLUSION AND RELATED WORK

We have provided a system level analysis of performance
and design issues surrounding rate adaptive networks. Our
primary contributions include the following.

• Intermediate subscription levels between βs and s may
be superfluous under certain circumstances.

• Optimal adaptation involves discriminating against
streams based on stream volume, offers significant per-
formance improvement over baseline adaptation policies,
but its implementation may be infeasible.

• Analysis of QoS under the rate adaptive scaling yields
useful expressions that can be used to help dimension
networks and identify bottlenecks.

• Multi-class admission control achieves the QoS benefits
of optimal adaptation but requires accurate knowledge of
system parameters.

Related work includes [10], [7], [11], [12], [13], [14], [15],
[8]. [10] investigates optimal policies to dynamically adapt

the fraction of the available bandwidth given to a base and
enhancement layer. Their work differs from ours in that it
takes is a client-centric view while ours is a system-centric
view. Both [7] and [8] use an almost identical model for QoS
as ours, but neither investigates optimal adaptation, which is
central to our effort. [11] proposes a TCP-friendly congestion
control scheme for rate adaptive video which makes smart use
of buffering to absorb short time scale congestion. This paper
also takes a client-centric view. [12], [13] investigates many
of the same issues, but focuses on services for clients with
heterogeneous access line rates. They focus on aligning offered
subscription levels to the bandwidth available to clients in
this environment and therefore come to different conclusions
regarding the benefit of providing additional encoding levels.
[14] offers a system level analysis of rate adaptive streams,
but in a static context, i.e., a fixed number of streams. [15]
investigates a model where the server dynamically adjusts the
number and rate of each subscription layer in response to
congestion feedback. We feel such server adaptive models are
of less interest than client adaptive models because the former
does not generalize well to multicast scenarios.

Our current challenge in this area is to develop loss-reactive
adaptation mechanisms that achieve near optimal performance
as optimal adaptation. McCanne’s RLM [16] adaptation mech-
anism utilizes sustained packet loss as a signal to streams
that their subscription level is too high for the bandwidth
available along their route. We propose a similar scheme but
where the stream’s sensitivity to loss depends on the stream
volume and the mean stream volume. Streams with a volume
significantly larger than the mean would have a high sensitivity
to loss, i.e., fewer packet losses are required to trigger an
adaptation, while streams with a volume significantly smaller
than the mean would have a lower sensitivity to loss. Such a
mechanism would allow for a higher client average normalized
subscription level than does RLM because it comes closer to
implementing the optimal adaptation policy.
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APPENDIX

Proof of Theorem 1. Define the instantaneous QoS of stream
(i, r) at time t as Qi,r(t) = Si,r(t)

Si,rDi,r
and define the instanta-

neous aggregate QoS of the network at time t as

Qagg(t) =
∑

r∈R

Nr(t)∑

i=1

Qi,r(t).

Straightforward application of Brumelle’s Result [17] for
stationary ergodic processes yields

Eπ[Q] ∝ Eπ[Qagg(t)].

Brumelle’s Result can be understood as a generalization of
Little’s Law. Thus maximizing Eπ[Q] is equivalent to maxi-
mizing Eπ[Qagg(t)] at some stationary time t.

We restrict ourselves to non-anticipatory policies, i.e., those
which only make use of information available at time t. To
this end, define the filtration {σ(t), t ∈ R} to represent what
is known at time t, which in this case includes the durations
and maximum subscription levels of all active streams, i.e.,

σ(t) = σ({(Ai,r,Di,r, Si,r) | Ai,r ≤ t})

where Ai,r is the time of arrival of stream (i, r). To find the
optimal adaptation policy we will seek to maximize

E[Qagg(t) | σ(t)] =
∑

r∈R

nr(t)∑

i=1

si,r(t)
si,rdi,r

,

over all feasible s(t) = (si,r(t), i = 1, ..., nr(t), r ∈ R),
where we can assume the random variables Nr(t) and Di,r

are known because they are in σ(t). Feasible s(t) requires
si,r(t) ∈ Si,r and that the link capacity constraints be obeyed.
The theorem follows. �

Proof of Corollary 1. The linear program (8) for the case of
a single bottleneck is

max
s(t)

{ n∑

i=1

si(t)
sidi

∣∣∣
n∑

i=1

si(t) ≤ c, si(t) ∈ Si
}
.

We use integer relaxation to transform the discrete constraint
si(t) ∈ Si to a continuous box constraint of the form βsi ≤
si(t) ≤ si. Using the change of variables xi(t) = si(t)

si
yields

max
x(t)

{ n∑

i=1

xi(t)
di

∣∣∣
n∑

i=1

sixi(t) ≤ c, β ≤ xi(t) ≤ 1
}
.

Changing variables again via yi(t) = xi(t)−β
1−β and c′ =

c−
∑

βsi

1−β yields

max
y(t)

{ n∑

i=1

yi(t)
di

∣∣∣
n∑

i=1

siyi(t) ≤ c′, 0 ≤ yi(t) ≤ 1
}
.

This is a standard knapsack problem where the weights are
the si, the values are 1

di
, and the size of the knapsack is c′.

We fill the knapsack sorted in order of decreasing value per
unit weight, i.e., starting with the smallest sidi. �
Proof of Theorem 2. The approach used to prove Theorem 1
applies here as well. The difference is that the filtration σ(t)
now is restricted to the arrival times {Ai,r ≤ t}, the durations
of departed streams {Di,r | Ai,r + Di,r ≤ t}, the maximum
subscription levels of all active streams {Si,r | Ai,r ≤ t}, and
the current ages of the active streams {Li,r = t−Ai,r | Ai,r ≤
t}. This yields

Eπ[Q(t) | σ(t)] =
∑

r∈R

nr(t)∑

i=1

si,r(t)
si,r

E[
1
D

| D > li,r].

The same considerations on feasible s(t) apply here yielding
the same equation as (8), with 1

di,r
replaced by E[ 1

D | D >

li,r]. �
Proof of Corollary 2. The proof follows directly from the
proofs of Theorem 2 and Corollary 1. �
Proof of Theorem 3. Proof of (16). By Brumelle’s Result
(see Theorem 1), E[Q] = E[S(t)

S ] at a typical time t. Note
that under the optimal adaptation policy S(t)

S is either 1 or β
depending on whether or not the stream is adapted at time t.
We write {A(m, t)} for the event that the stream is adapted
in the mth link at time t under πk, and {Ac(m, t)} for the
event that the stream is not adapted.

qα,πk = lim
m→∞

E[
S(t)
S

]

= lim
m→∞

1P({Ac(m, t)}) + βP({A(m, t)})

= 1 − (1 − β) lim
m→∞

P({A(m, t)})

We next condition on S and D, and, by Dominated Conver-
gence, move the limit inside the integrals.

qα,πk = 1 − (1 − β)
∫ ∞

0

∫ ∞

0
[ lim
m→∞

p(m, t, s, d)]dFD(d)dFS(s)
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where p(m, t, s, d) = P({A(m, t)} | S = s,D = d). We focus
now on limm→∞ p(m, t, s, d). Let N(m, t) denote the number
of other active streams, besides the stream with volume sd, in
the mth system at a typical time t. The event that a stream
with volume sd is adapted at a typical time t is equivalent to
the event

N(m,t)∑

i=1

SiI(SiD̂i ≤ sd)+s+β
N(m,t)∑

i=1

SiI(SiD̂i > sd) ≥ c(m)

where we write D̂ to denote that the durations of the N(m, t)
other streams active at time t have stretched distributions [18].
Thus p(m, t, s, d)

= P(
N(m,t)∑

i=1

SiI(SiD̂i ≤ sd) +

s+ β
N(m,t)∑

i=1

SiI(SiD̂i > sd) ≥ c(m))

= P(
1
mσρ

N(m,t)∑

i=1

SiI(SiD̂i ≤ sd) +

s

mσρ
+

β

mσρ

N(m,t)∑

i=1

SiI(SiD̂i > sd) ≥ α).

We now define the random variable Z(m, t, s, d)

=
1
mσρ

N(m,t)∑

i=1

SiI(SiD̂i ≤ sd)+
β

mσρ

N(m,t)∑

i=1

SiI(SiD̂i > sd)

so that

lim
m→∞

p(m, t, s, d) = lim
m→∞

P(Z(m, t, s, d) ≥ α− s

mσρ
).

We next find the mean and variance of Z(m, t, s, d).

E[Z(m, t, s, d)] =
1
mσρ

E[
N(m,t)∑

i=1

SiI(SiD̂i ≤ sd)] +

=
β

mσρ
E[
N(m,t)∑

i=1

SiI(SiD̂i > sd)].

By Wald’s identity,

E[
N(m,t)∑

i=1

SiI(SiD̂i ≤ sd)] = E[N(m, t)]E[SI(SD̂ ≤ sd)].

Recall N(m, t) ∼ Poisson(mρ), so that E[N(m, t)] = mρ.
Also,

E[SI(SD̂ ≤ sd)] =
∫ ∞

0

∫ ∞

0
xI(xy ≤ sd)dFD̂(y)dFS(x)

=
∫ ∞

0
x
[∫ sd

x

0
dFD̂(y)

]
dFS(x)

=
∫ ∞

0
x
[∫ sd

x

0

1
E[D]

ydFD(y)
]
dFS(x).

Now introduce the change of variables z = xy:

E[SI(SD̂ ≤ sd)] =
1

E[D]

∫ ∞

0

∫ sd

0
zdFD(

z

x
)
1
x
dFS(x)

=
1

E[D]

∫ sd

0

[∫ ∞

0

z

x
fD(

z

x
)fS(x)dx

]
dz

=
1

E[D]

∫ sd

0
z
[
fSD(z)

]
dz

=
E[SD]
E[D]

∫ sd

0

z

E[SD]
dFSD(z)

= σF
ŜD

(sd).

A similar argument shows that E[SI(SD̂ > sd)] = σF̄
ŜD

(sd).
We combine the above results to obtain

E[Z(m, t, s, d)] = F
ŜD

(sd) + βF̄
ŜD

(sd).

We next bound the variance of Z(m, t, s, d). We can write

Z(m, t, s, d) =
1
mσρ

N(m,t)∑

i=1

Wi

for Wi = Si(1 − (1 − β)I(SiD̂i ≥ sd)). and thereby obtain
V ar(Z(m, t, s, d)) =

1
(mσρ)2

[
E[N(m, t)]V ar(W ) + E[W ]2V ar(N(m, t))

]
.

Recalling that E[N(m, t)] = V ar(N(m, t)) = mρ, we obtain

V ar(Z(m, t, s, d)) =
1

mσ2ρ
E[W 2] ≤ E[S2]

mσ2ρ
.

We consider three cases: i) E[Z(m, t, s, d)] < α, ii)
E[Z(m, t, s, d)] = α, iii) E[Z(m, t, s, d)] > α. Consider the
first case. Define ε(m) = α − s

mσρ − E[Z(m, t, s, d)]. Note
that E[Z(m, t, s, d)] < α implies there exists an m′ such that
ε > 0 for all m > m′. A little thought shows

P(Z(m, t, s, d) ≥ α− s

mσρ
) ≤

P(|Z(m, t, s, d) − E[Z(m, t, s, d)]| > ε(m))

for all m > m′. Chebychev’s inequality yields

P(|Z(m, t, s, d) − E[Z(m, t, s, d)]| > ε(m)) ≤
V ar(Z(m, t, s, d))

ε(m)2
, ∀m > m′.

Noting that limm→∞ ε(m) is a constant and that
limm→∞ V ar(Z(m, t, s, d)) = 0 implies

lim
m→∞

P(Z(m, t, s, d) ≥ α− s

mσρ
) = 0

when E[Z(m, t, s, d)] < α. A similar analysis for the third
case yields

lim
m→∞

P(Z(m, t, s, d) ≥ α− s

mσρ
) = 1
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when E[Z(m, t, s, d)] > α. Finally, the set of pairs (s, d) such
that E[Z(m, t, s, d)] = α has measure zero. Thus, we conclude

lim
m→∞

p(m, t, s, d) = lim
m→∞

P(Z(m, t, s, d) ≥ α− s

mσρ
)

= I(E[Z(m, t, s, d)] > α).

Note that I(E[Z(m, t, s, d)] > α) is equivalent to I(sd >
F−1
ŜD

(ξ)) for ξ = α−β
1−β . Substituting this into the integral yields

qα,πk = 1 − (1 − β)
∫ ∞

0

∫ ∞

0
I(sd > F−1

ŜD
(ξ))dFD(d)dFS(s)

which easily simplifies to the equation given in the Theorem.
Proof of (17). The proof of qα,πu is similar to that of qα,πk .

Because we sort by expected volume, we must condition on the
age of the stream at the typical time t. It may be shown that,
conditioned on a stream of duration D being in the system,
the age of that stream at a typical time t ∈ [0,D] is uniform
over [0,D] [18]. Proceeding as before, but also conditioning
on the age of the stream yields

qα,πu = 1 − (1 − β)
∫ ∞

0

∫ ∞

0

1
d

∫ d

0[
lim
m→∞

p(m, t, s, l)
]
dl dFD(d) dFS(s).

where p(m, t, s, l) is the probability a stream with maximum
subscription level s and age l is adapted in the mth link at a
typical time t under policy πu. We may write

p(m, t, s, l) = P(Z(m, t, s, l) > α− s

mσρ
)

where

Z(m, t, s, l) =
1
mσρ

N(m,t,)∑

i=1

SiI(Vi(t)−1 > v(t)−1)

+
β

mσρ

N(m,t,)∑

i=1

SiI(Vi(t)−1 < v(t)−1).

Here Vi(t)−1 = 1
Si

E[ 1
D̂i

| D̂i > Li(t)] is the expected volume
of stream i at time t, with Li(t) as the age of stream i at time
t, and v(t)−1 = 1

sE[ 1
D | D > l] is the expected volume of

the conditioned stream. Using the fact that the joint density of
the stream age and duration is fLD̂(l, d) = 1

E[D]fD(d) for all
0 ≤ l ≤ d ([18]) allows

E[
1
D̂i

| D̂i > Li(t)] =
∫ ∞

0

∫ x

0

1
x
fLD̂(y, x)dydx

=
∫ ∞

0

1
E[D]

fD(x)dx = µ.

Writing γ(l) = E[ 1
D | D > l], we come to

Z(m, t, s, l) =
1
mσρ

N(m,t)∑

i=1

SiI(
µ

Si
>
γ(l)
s

)

+
β

mσρ

N(m,t)∑

i=1

SiI(
µ

Si
<
γ(l)
s

).

We now follow a similar program to the proof for the case of
known stream durations, omitted here due to space constraints.
�
Proof of Theorem 4. It is not difficult to show that, for any
random variable V ,

E[V | vk−1 ≤ V < vk] = E[V ]
FV̂ (vk) − FV̂ (vk−1)
FV (vk) − FV (vk−1)

.

Using the definition of λk(m) we may write the optimization
problem as

max
v

K∑

k=1

(FV (vk) − FV (vk−1))βk

s.t.
K∑

k=1

(FV̂ (vk) − FV̂ (vk−1))βk =
ασρ

λE[V ]
= α.

The Lagrangian is

L(v, z) =
K∑

k=1

(FV (vk) − FV (vk−1))βk

− z
( K∑

k=1

(FV̂ (vk) − FV̂ (vk−1))βk − α
)
.

Taking derivatives and simplifying yields

∂L(v, z)
∂vk

= (fV (vk) − zfV̂ (vk))(βk − βk+1).

Using the fact that fV̂ (v) = 1
E[V ]vfV (v) yields

∂L(v, z)
∂vk

= fV (vk)(1 − zvk
E[V ]

)(βk − βk+1).

Optimality requires ∂L(v,z)
∂vk

= 0,∀k, which means v∗
k =

E[V ]
z ∀k, i.e., all optimal thresholds are equal. This implies

only two service classes are required.
To find the optimal threshold we consider the asymptotic

zero blocking constraint for a two class admission policy:

λ1E[V | V ≤ v∗] + λ2E[V | V > v∗]β = ασρ.

This simplifies to

FV̂ (v∗) + F̄V̂ (v∗)β = α.

which yields the equation for v∗ for β < α < 1 since V =
SD. When α ≤ β asymptotic zero blocking is impossible,
but is minimized by admitting all streams at their minimum
subscription level βS, i.e., v∗ = 0. When α ≥ 1 we obtain
asymptotic zero blocking by admitting all streams at S, i.e.,
v∗ = ∞.

The asymptotic normalized subscription level under the op-
timal admission policy is 1 for all streams with volume V ≤ v∗

and β for all streams with volume V > v∗, yielding an overall
asymptotic normalized subscription level FV (v∗) + βF̄V (v∗).
Substituting the value for v∗ and rearranging yields the result.
�
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